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Figure 1: An overview of our view-based symmetry detection algorithm: an example of an ant model, its viewpoint entropy distribution, and
the detected symmetry plane by matching the viewpoints.

Abstract

Symmetries exist in many 3D models while efficiently finding their
symmetry planes is important and useful for many related applica-
tions. This paper presents a simple and efficient view-based reflec-
tion symmetry detection method based on the viewpoint entropy
features of a set of sample views of a 3D model. Before symmetry
detection, we align the 3D model based on the Continuous Princi-
pal Component Analysis (CPCA) method. To avoid the high com-
putational load resulting from a directly combinatorial matching
among the sample views, we develop a fast symmetry plane detec-
tion method by first generating a candidate symmetry plane based
on a matching pair of sample views and then verifying whether the
number of remaining matching pairs is within a minimum number.
Experiments demonstrate better accuracy, efficiency, and flexibility
of our algorithm than state-of-the-art approaches.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—[Curve, surface, solid and object
representations]

Keywords: symmetry detection, viewpoint entropy, matching

1 Introduction

Symmetry is an important clue for geometry perception: it is not
only in many man-made models, but also widely exists in the
nature [Liu et al. 2010]. Symmetry has been used in many ap-
plications such as: 3D alignment [Chaouch and Verroust-Blondet
2009], shape matching [Kazhdan et al. 2004], remeshing [Podolak
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et al. 2007], 3D model segmentation [Simari et al. 2009] and re-
trieval [Sfikas et al. 2011].

However, existing symmetry detection algorithms still have much
room for improvement in terms of both simplicity and efficiency
in detecting symmetry planes, as well as the degree of freedom
to find approximate symmetry planes for a roughly symmetric 3D
model. In addition, most of the existing symmetry detection meth-
ods are geometry-based, thus their computational efficiency will
be tremendously influenced by the number of vertices of a model.
Motivated by the symmetric patterns existing in the viewpoint en-
tropy [Vázquez et al. 2001] distribution of a symmetric model, we
propose a novel and efficient view-based symmetry detection algo-
rithm (see Fig. 1) which finds symmetry plane(s) by matching the
viewpoint entropy features of a set of sample views of a 3D model
aligned beforehand using Continuous Principal Component Analy-
sis (CPCA) [Vranic 2004]. Based on experimental results, we find
that our symmetry detection algorithm is more accurate (in terms
of both the positions of detected symmetry planes and sensitivity
to minor symmetry differences), efficient, robust (e.g. to the num-
ber of vertices and parameter settings such as view sampling), and
versatile in finding symmetry planes of diverse models.

In the rest of the paper, we first review the related work in Sec-
tion 2. In Section 3, we present the viewpoint entropy distribution-
based symmetry detection algorithm. Section 4 describes diverse
experimental evaluation and comparison results of the detection al-
gorithm. Section 5 concludes the paper and lists several future re-
search directions.

2 Related Work

Symmetry Types Though there are different types of symmetry,
reflection symmetry is the most important and commonly studied.
Chaouch and Verroust-Blondet [Chaouch and Verroust-Blondet
2009] introduced four types of reflection symmetries, which are
cyclic (several mirror planes passing through a fixed axis), dihe-
dral (several mirror planes passing through a fixed axis with one
perpendicular to the axis), rotational symmetry (looks similar af-
ter rotation, e.g., different platonic solids, like tetrahedron, octahe-
dron, icosahedron and dodecahedron) and unique symmetry (only
one mirror plane, for instance, many natural and most man-made
objects). Most symmetric objects are mirror rather than rotational



symmetric [Sawada and Pizlo 2008].

Symmetry Detection Symmetry detection is to search the (par-
tial or full) symmetry planes of a 3D object. The latest review on
symmetry detection is available in [Mitra et al. 2012]. We clas-
sify current symmetry detection techniques into the following four
groups according to the features employed.

Symmetry detection based on pairing point features. This type
of approach first samples points on the surface of a 3D model and
then extracts their features. After that, it finds point pairs by match-
ing the points. Based on the point pairs, symmetry evidences are
accumulated to decide the symmetry plane. Two typical algorithms
are [Mitra et al. 2006] and [Cailliere et al. 2008]. To decide the
symmetry plane, Mitra et al. [Mitra et al. 2006] adopted a stochastic
clustering and region-growing approach, while Calliere et al. [Cail-
liere et al. 2008] followed the same framework of pairing and clus-
tering, but utilized 3D Hough transform to extract significant sym-
metries. In fact, the initial idea of this approach can be traced
back to the symmetry distance defined in [Zabrodsky et al. 1995].
Podolak et al. [Podolak et al. 2006] proposed a planar-reflective
symmetry transform and based on the transform they defined two
3D features named center of symmetry and principal symmetry
axes, which are useful for related applications such as 3D model
alignment, segmentation, and viewpoint selection.

Symmetry detection based on pairing line features. Bokeloh et
al. [Bokeloh et al. 2009] targeted on the so-called rigid symmetries
by matching feature lines. Rigid symmetries are the reoccurring
components with differences only in rigid transformations (transla-
tion, rotation and mirror). They first extracted feature lines of a 3D
model, then performed feature line matching, and finally validated
the symmetry based on the feature correspondence information by
adopting a region growing approach, as well.

Symmetry detection based on 2D image features. Sawada and
Pizlo [Sawada and Pizlo 2008] [Sawada 2010] performed symme-
try detection based on a single 2D image of a volumetric shape.
First, a polyhedron is recovered from the single 2D image based
on a set of constraints including 3D shape symmetry, minimum
surface area, maximum 3D compactness and maximum planarity
of contours. Then, they directly compared the two halves of the
polyhedron to decide its symmetry degree. From a psychological
perspective, Zou and Lee [Zou and Lee 2006] [Zou and Lee 2005]
proposed one method to detect the skewed rotational and mirror
symmetry respectively from a CAD line drawing based on a topo-
logical analysis of the edge connections.

Other symmetry detection approaches. Martinet et al. [Martinet
et al. 2006] proposed a 3D feature named generalized moments for
symmetry detection. Rather than directly computing original mo-
ments features, they mapped them into another feature space by
spherical harmonics transform and then searched for the global
symmetry in the new feature space. Xu et al. [Xu et al. 2009]
developed an algorithm to detect partial intrinsic reflectional sym-
metry based on an intrinsic reflectional symmetry axis transform.
After that, a multi-scale partial intrinsic symmetry detection algo-
rithm was proposed in [Xu et al. 2012]. There are also techniques
to detect some other specific symmetries, such as curved symme-
try [Liu and Liu 2010] and symmetries of non-rigid models [Ra-
viv et al. 2010], as well as symmetry hierarchy of a man-made 3D
model [Wang et al. 2011]. Kim et al. [Kim et al. 2010] detected
global intrinsic symmetries of a 3D model based on Möbius Trans-
formations [Lipman and Funkhouser 2009], a stereographic pro-
jection approach in geometry. Recently, Wang et al. [Wang et al.
2014] proposed Spectral Global Intrinsic Symmetry Invariant Func-
tions (GISIFs), which are robust to local topological changes com-
pared to the GISIFs obtained from geodesic distances. Their gener-

ality and flexibility outperform the two classical GISIFs: Heat Ker-
nel Signature (HKS) [Sun et al. 2009] and Wave Kernel Signature
(WKS) [Aubry et al. 2011].

All above and existing symmetry detection techniques can be cat-
egorized into a geometry-based approach. However, distinctively
different from them, we adopt a view-based approach to accumu-
late the geometrical information of many vertices together into a
view in order to more efficiently detect the reflection symmetry of
a 3D model, which also serves as the novelty and main contribution
of our method.

Symmetry Applications As an important shape feature, symme-
try is useful for many related applications. For example, they in-
clude symmetry plane detection for 3D MRI image [Tuzikov et al.
2003], shape matching [Kazhdan et al. 2004] [Podolak et al. 2006],
3D model alignment [Tedjokusumo and Leow 2007] [Sfikas et al.
2011], shape processing and analysis [Golovinskiy et al. 2009] in-
cluding remeshing [Podolak et al. 2007], symmetrization [Mitra
et al. 2006], viewpoint selection [Podolak et al. 2006], and subspace
shape analysis [Berner et al. 2011], 3D segmentation [Podolak et al.
2006] [Simari et al. 2009] [Wang et al. 2014], and curve skeleton
extraction [Tagliasacchi et al. 2009] [Cao et al. 2010].

3 Symmetry Detection Algorithm

3.1 3D Model Normalization Based on CPCA

Properly normalizing a 3D model before symmetry detection can
help us to minimize the searching space for symmetry planes.
The process of 3D normalization includes three steps: 3D align-
ment (orientation normalization), translation (position normaliza-
tion), and scaling (size normalization). 3D model alignment is to
transform a model into a canonical coordinate frame, where the
representation of the model is independent of its scale, orienta-
tion, and position. Two commonly used 3D model alignment meth-
ods are Principal Component Analysis (PCA) [Jolliffe 2002] and
its descendant Continuous Principal Component Analysis (CPCA)
[Vranic 2004] which considers the area of each face. They utilize
the statistical information of vertex coordinates and extract three
orthogonal components with largest extent to depict the principal
axes of a 3D model. CPCA is generally regarded as a more stable
PCA-based method. In addition, Johan et al. [Johan et al. 2011]
proposed a 3D alignment algorithm based on Minimum Projection
Area (MPA) which aligns a 3D model by successively selecting two
perpendicular axes with minimum projection areas while the third
axis is the cross product of the first two axes. However, compared
with the PCA-based approaches, MPA takes a longer time to align
3D models while for this research we want to detect symmetry fast.

After a comparison of the influences of different 3D model align-
ment algorithms on the efficiency, accuracy and robustness of our
view-based symmetry detection approach, we choose CPCA to
align a model before performing symmetry detection. After the
alignment with CPCA, we translate the model such that the cen-
ter of its bounding sphere locates at the origin and scale the model
such that its bounding sphere has a radius of 1. After this normal-
ization, the symmetry plane(s) will pass the origin, which helps us
to significantly reduce the searching space.

3.2 View Sampling and Viewpoint Entropy Distribution
Generation

Vázquez et al. [Vázquez et al. 2001] proposed an information
theory-related measurement named viewpoint entropy to depict the
amount of information a view contains. It is formulated based on



the Shannon entropy and incorporates both the projection area of
each visible face and the number of visible faces into the definition.
However, the original definition was developed based on perspec-
tive projection, thus we use its extended version defined in [Taka-
hashi et al. 2005] for orthogonal projection.

For each model, we sample a set of viewpoints based on the Loop
subdivision [Loop 1987] on a regular icosahedron, denoted as L0.
We subdivide L0 n times and denote the resulting mesh as Ln.
Then, we set the cameras on its vertices, make them look at the ori-
gin (also the center of the model) and apply orthogonal projection
for rendering. For a 3D model, to differentiate its different faces, we
assign different color to each face during rendering. One example
is shown in Fig. 2.

Figure 2: Face color coding example.

The viewpoint entropy [Takahashi et al. 2005] of a view with m
visible faces is defined as follows.

E = − 1

log2(m+ 1)

m∑
j=0

Aj

S
log2

Aj

S
(1)

where, Aj is the visible projection area of the jth (j=1, 2, · · · , m)
face of a 3D model and A0 is the background area. S is the total
area of the window where the model is rendered: S=A0+

∑m
j=1 Aj .

Projection area is computed by counting the total number of pixels
inside a projected face.

Figure 3: Viewpoint entropy distribution examples: 1st row shows
the models after alignment with CPCA; 2nd row demonstrates their
respective viewpoint entropy distribution. Blue: large entropy;
green: mid-size entropy; red: small entropy.

Figure 3 shows the viewpoint entropy distributions of several mod-
els by using L4 (2,562 sample viewpoints) for view sampling and
mapping their entropy values as colors on the surface of the spheres
based on the HSV color model. We can see there is a perfect
correspondence between the symmetry of a model and that of its
viewpoint entropy distribution sphere: their symmetry planes are
the same. Therefore, the symmetry of a 3D model can be decided
by finding the symmetry in the entropy distribution, thus avoiding

the high computational cost of direct matching among its geomet-
rical properties. What’s more, since viewpoint entropy is computed
based on the projection of each face, it is highly sensitive to small
differences in the model. In addition, each viewpoint simultane-
ously captures the properties of many vertices and faces of a model
as a whole, which also helps to significantly reduce the computa-
tional cost. We also find that it is already accurate enough based
on a coarse view sampling, such as using L1, as demonstrated in
Section 4.2. Motivated by these findings, we propose to detect the
symmetry of a 3D model based on its viewpoint entropy distribu-
tion.

3.3 Symmetry Detection Based on Iterative Feature
Pairing

Even only using L1 (42 viewpoints) for view sampling, if based
on a naive matching approach by first directly selecting half of the
total viewpoints and then matching them with the remaining half,
it will result in P (42, 21)=2.75×1031 combinations. Thus, we de-
velop a much more efficient symmetry detection method based on
the following idea: iteratively select a matching pair of viewpoints
to generate a symmetry plane and then verify all the rest matching
pairs to see whether they are symmetric as well w.r.t the symmetry
plane or at least in the symmetry plane. The method is listed in
Algorithm 1.

We need to mention the followings for the algorithm. The views
corresponding to the viewpoints that are located on the symmetry
plane do not need to match each other. While, according to the
Loop rule [Loop 1987], at most 2n+2 vertices of Ln are coplanar in
a plane w.r.t a great circle. That is to say, at most 2n+2 viewpoints
could be in the real symmetry plane. An ideal algorithm is to per-
fectly match w.r.t the symmetry plane all the viewpoint pairs that
are not in the symmetry plane. However, we have found that usu-
ally there are numerical accuracy problems related to 3D model ren-
dering (e.g. aliasing), viewpoint entropy computation (usually the
entropy values of two symmetric viewpoints are not completely the
same), as well as possible (either big or minor) differences in mesh
triangulation. Therefore, we propose to partially solve this issue by
relaxing some of the conditions though it sometimes causes certain
false positive detections: if the total number (matches) of matched
viewpoints w.r.t a candidate symmetry plane is at least N − 2n+2,
then it is confirmed as a symmetry plane. δ is a threshold which
can control the strictness of symmetry definition. For example, us-
ing a small threshold we detect more strictly defined symmetries
while using a bigger threshold, we allow some minor differences
and detect rough symmetry properties. T1 and T2 are the normals
of the planes w.r.t two correspondence points (Pu and Pv; Pi and
Pj). The condition ∥CT∥ > ϵ AND |DT | ̸= 0 means T1 and
T2 is neither parallel nor perpendicular to each other. In another
word, the line between Pi and Pj is not perpendicular to the can-
didate symmetry plane since T1 and T2 are not parallel (otherwise,
∥CT∥ = 0); and Pi and Pj are also not in the symmetry plane
(otherwise, |DT | = 0). Pm is the midpoint of the line segment
connecting points Pi and Pj . It is used to further assert the verti-
cal symmetry property of Pi and Pj about the candidate symmetry
plane by finding out whether the midpoint is in the plane, that is
|T 1 · Pm| = 0. The computational complexity of the algorithm
is O(N4), which is much faster than the combinatorial matching
approach: e.g. there are only N2·(N − 1)2/4=741,321 combina-
tions based on L1 (N=42), which is 3.71×1025 faster than the naive
method. In experiments, we select n to be 1.



Algorithm 1: Symmetry detection by iterative pairing
Input : N : number of viewpoints;

Pos[N ]: positions of N viewpoints;
E[N ]: entropy values of N viewpoints;
n: icosahedron subdivision level;
δ=0.015: entropy difference threshold;
ϵ=1e-5: small difference in double values

Output: Symmetry planes’ equations, if applicable
begin

// loop symmetric viewpoint pairs (u, v)
for u← 0 to N − 2 do

Pu ←− Pos[u];
for v ← u+ 1 to N − 1 do

if |E[u]−E[v]| >δ*min{E[u],E[v]} then
continue;

Pv ←− Pos[v], T1 ←− normalize(Pu − Pv);
matches←− 2;
// verify other matching pairs
for i← 0 to N − 2 do

if i == u OR i == v then
continue;

Pi ←− Pos[i];
for j ← i+ 1 to N − 1 do

if j == u OR j == v OR j == i then
continue;

if |E[i]−E[j]| >δ*min{E[i],E[j]} then
continue;

Pj ←− Pos[j], Pm ←− Pi+Pj

2
;

T2 = normalize(Pi − Pj);
CT = T1 × T2, DT = T1 · T2;
if ∥CT∥ > ϵ AND |DT | ̸= 0 then

continue;
if |T1 · Pm| > ϵ then

continue;
matches=matches+2;
break;

// output the symmetry plane
if matches ≥ N − 2n+2 then

Output and visualize the symmetry plane:
T1[0] ∗ x+ T1[1] ∗ y + T1[2] ∗ z = 0

4 Experiments and Discussions

4.1 Evaluation w.r.t to Dataset-Level Performance

We have tested our algorithm on the NIST benchmark [Fang et al.
2008] and selected models from the AIM@SHAPE Shape Repos-
itory [AIM@SHAPE 2014] to compare with state-of-the-art ap-
proaches like the Mean shift [Mitra et al. 2006] and 3D Hough
transform [Cailliere et al. 2008] based methods, which are among
the few papers that deal with global symmetry detection and at the
same time provide a quantitative evaluation based on a common set
of 3D models. Experiments show that our approach can stably de-
tect the symmetry planes of diverse symmetric models and it also
can detect a symmetry plane for a rough symmetric model with a
bigger threshold δ. Figure 4 demonstrates several examples while
Table 1 compares their timing information. We need to mention
that due to the difference in the specifications of the CPUs used in
the experiments, we do not directly compare the absolute running
time, but rather we focus on the change of the running time with

respect to the increase in the number of vertices of the 3D models.
As can be seen, our method shows better computational efficiency
property in terms of scalability to the number of vertices. This is
mainly because the computational time does not increase linearly
with the increase in the number of vertices of a 3D model since we
just render the 3D model first and detect its symmetry only based
on the rendered views. However, for the other two geometry-based
approaches Mean shift and 3D Hough, their computational time is
highly affected by the number of vertices of the model.

To measure the accuracy of the detected symmetry planes, we
adopt the mean (normalized by the surface area) and maximum
(w.r.t the bounding box diagonal) distance errors developed in
Metro [Cignoni et al. 1998] which is based on surface sampling and
point-to-surface distance computation. Table 2 compares the mean
and max errors of the four models in Table 1 (see Fig. 4 for the
errors of other models) with the Mean shift [Mitra et al. 2006] and
3D Hough transform [Cailliere et al. 2008] based methods. The
errors are computed based on the original mesh and its reflected
3D model w.r.t the detected symmetry plane. As can be seen, our
approach achieves much (4∼6 times w.r.t 3D Hough transform and
11∼44 times w.r.t Mean shift) better overall accuracy (see the mean
errors), in spite that a few points may not be the most accurate but
they still maintain a moderate accuracy (indicated by the max er-
rors).

(a) 0.0062/0.0062 (b) 0.0073/0.014 (c) 0.0096/0.0210

(d) 0.0013/0.0036 (e) 0.0003/0.0027 (f) 0.0005/0.0041

Figure 4: Example symmetry detection results with mean/max er-
ror measures [Cignoni et al. 1998].

Table 1: Timing information (in seconds) comparison of our meth-
ods and other two state-of-the-art approaches: Mean shift [Mitra
et al. 2006] and 3D Hough [Cailliere et al. 2008] are based on a
Pentium M 1.7 GHz CPU according to [Cailliere et al. 2008]; while
our method is using an Intel(R) Xeon(R) X5675 @ 3.07GHz CPU.

Models Cube Beetle Homer Mannequin
#Vertices 602 988 5,103 6,743
Mean shift 1.8 6.0 91.0 165.0
3D Hough 2.2 3.0 22.0 33.0
Our method 0.7 0.8 1.0 1.1

In addition, it is also very convenient to detect different degrees of
symmetries via control of the entropy difference threshold δ. As
shown in Fig. 4, there is a minor asymmetry on the the tail part
of the cow, while other parts are symmetric. If we want to obtain
strict symmetry, a smaller threshold δ (e.g. by reducing it by half:



Table 2: Mean/max errors [Cignoni et al. 1998] comparison of our methods and other two state-of-the-art approaches. For the Cube model,
since there are three detected symmetry planes, we use their normal directions (x/y/z) to differentiate them.

Methods Cube Beetle Homer Mannequin
mean max mean max mean max mean max

Mean shift [Mitra et al. 2006] N.A. N.A. N.A. N.A. 0.059 0.018 0.111 0.037
3D Hough [Cailliere et al. 2008] N.A. N.A. N.A. N.A. 0.007 0.001 0.046 0.009

Our method 0.0005 (x) 0.0008 (x) 0.0062 0.0062 0.0013 0.0036 0.0096 0.02100.0057 (y, z) 0.0082 (y, z)

0.0075) will give the result that it is asymmetric. We also find that
our approach can simultaneously detect multiple symmetry planes
for certain types of meshes, such as the Eight, Skyscraper, Bottle,
Cup, Desk Lamp, and Sword in [AIM@SHAPE 2014] and [Fang
et al. 2008], as shown in Fig. 5. But we need to mention due to the
limitation of CPCA and the sensitivity property to minor changes of
the viewpoint entropy feature, there are a few fail cases or certain
cases where the proposed method can only partially determine a
set of reflection planes. Examples of such models are non-uniform
cubes, butterflies, tori, and pears, as demonstrated in Fig. 6: (a) be-
cause of non-uniform triangulation, the cube model cannot be per-
fectly aligned with CPCA, resulting in the unsuccessful symmetry
plane detection. However, we have found that for most symmet-
ric models (e.g. Mug, NonWheelChair, and WheelChair classes)
that cannot be perfectly aligned with CPCA [Vranic 2004], our
approach can still successfully detect their symmetry planes (e.g.
the detection rates of Algorithm 1 for those types of models men-
tioned above are as follow: Mug: 7/8, NonWheelChair: 18/19, and
WheelChair: 6/7). Three examples can be found in Fig. 7; (b) the
symmetry plane of the butterfly cannot be detected if based on the
default threshold δ=0.015, and only after increasing it till 0.0166 we
can detect the plane; (c) only the red symmetry plane of the torus
is detected based on the default threshold value, while both the red
and green planes will be detected if we increase the threshold δ to
0.02 and all the three symmetry planes can be detected if we further
increase it till 0.0215; (d) a false positive (blue) symmetry plane
of the pear model will appear under the condition of the default
threshold, however the error will be corrected with a little smaller
threshold of 0.0133. An adaptive strategy of threshold selection is
among our next work plan.

(a) eight (b) skyscraper (c) bottle

(d) cup (e) desk lamp (f) sword

Figure 5: Multiple detected symmetry planes examples.

Finally, we evaluate the overall performance of our viewpoint en-
tropy distribution-based symmetry detection algorithm based on the

(a) non-uniform (CPCA) (b) fail (if δ<0.0166)

(c) partially (if δ<0.0215) (d) one false positive (if δ>0.0133)

Figure 6: Failed or partially failed examples.

NIST benchmark [Fang et al. 2008]. In total, we have detected
647 symmetry planes for all the 800 models (some of them are
asymmetric). To know the general performance of our algorithm,
we manually observe the symmetry property of each of the first
200 models and label its symmetry plane(s)/degree(s) to form the
ground truth. Then, we examine each detected symmetry plane to
see whether it is a True Positive (TP) or False Positive (FP). Simi-
larly, we set the True Negative (TN) value of a model to be 1 if it
is asymmetric and our algorithm also does not detect any symme-
try plane. While, if a symmetry plane of a symmetric model is not
detected, we increase its False Negative (FN) by 1. Table 3 gives
the evaluation results (177 detected symmetry planes) on the 200
models (having 194 symmetry planes in total), which are uniformly
divided into 10 classes (Bird, Fish, NonFlyingInsect, FlyingInsect,
Biped, Quadruped, ApartmentHouse, Skyscraper, SingleHouse and
Bottle).

Table 3: Overall symmetry detection performance of our algorithm
based on the first 200 models of the NIST benchmark.

Metrics TP FP TN FN
# 149 28 37 32

Based on the TP, FP, TN and FN values, we compute the fol-
lowing nine detection evaluation metrics [Manohar et al. 2006],
as listed in Table 4: Tracker Detection Rate (TRDR, TP

TG
), False

Alarm Rate (FAR, FP
TP+FP

), Detection Rate (DR, TP
TP+FN

), Speci-
ficity (SP, TN

FP+TN
), Accuracy (AC, TP+TN

TF
), Positive Predic-

tion (PP, TP
TP+FP

), Negative Prediction (NP, TN
FN+TN

), False
Negative Rate (FNR or Miss Rate, FN

FN+TP
), and False Posi-

tive Rate (FPR, FP
FP+TN

), where the total number of symme-



(a) Mug (CPCA) (b) Mug (symmetry plane)

(c) NonWheelChair (CPCA) (d) NonWheelChair (symmetry plane)

(e) WheelChair (CPCA) (f) WheelChair (symmetry plane)

Figure 7: Examples to demonstrate that our algorithm can suc-
cessfully detect the symmetry planes for most symmetric models
that are not perfectly aligned with CPCA: first column shows the
CPCA aligned results; second column demonstrates the detected
symmetry planes.

try planes in the 200 Ground Truth models TG=194 and the to-
tal number of our detections (including both trues and falses)
TF=TP+FP+TN+FN=246. As can be seen, besides the better ac-
curacy in the detected symmetry planes as mentioned before, our
detection performance (e.g., Detection Rate DR=82.32%, Tracker
Detection Rate TRDR=76.80%) is also good enough.

In a word, as demonstrated by all the above evaluation results, better
accuracy and efficiency than state-of-the-art approaches have been
achieved by our simple but effective symmetry detection method.

4.2 Evaluation w.r.t to Robustness

Robustness to View Sampling We also test our algorithm with
different levels of subdivided icosahedron for the view sampling,
e.g., L2, L3, and L4. Table 5 compares the mean/max errors and
running time for the four models listed in Table 1. As can be seen,
increasing the view sampling often cannot increase the accuracy
while the running time will be significantly increasing. Thus, we
choose to sample the views based on L1 which gives better overall
performance in both the accuracy and efficiency.

Robustness to Number of Vertices We test the robustness of
our algorithm w.r.t the change of the (especially large) number of
vertices (resolution) that a 3D model contains. We first subdivide a
triangular mesh into its finer version based on several iterations of
midpoint subdivision by utilizing the tool of MeshLab [MeshLab
2014] and then use the resulting meshes for the test and compar-
ison. We have tested the Elephant, Mannequin and Cube models,
and found that our algorithm can stably and accurately detect their
symmetry planes, independent of the number of vertices. Table 6
compares their mean/max errors and timings. We can see that the
increase in computational time is often significantly slower (espe-
cially for models with an extremely large number of vertices; e.g.
for Mannequin (467,587 vertices) and Cube (196,610 vertices) they
are about 8 and 28 times slower, respectively) than the increase in
the number of vertices since rendering the sampling views to com-
pute their viewpoint entropy dominates the running time.

Table 6: Mean/max errors and timing comparison of our algorithm
w.r.t the robustness to different number of vertices. For the Cube
model, since there are three detected symmetry planes, we use their
normal directions (x/y/z) to differentiate them.

Models #Vertices mean max time

Elephant
29,285 0.0003 0.0027 3.0

116,920 0.0003 0.0027 12.3
467,252 0.0003 0.0027 48.4

Mannequin
17,450 0.0091 0.0210 2.6
29,194 0.0091 0.0210 3.8

467,587 0.0091 0.0210 48.2

Cube

6,146
0.0050 (x) 0.0077 (x)

1.50.0082 (y) 0.0137 (y)
0.0061 (z) 0.0093 (z)

24,578
0.0002 (x) 0.0003 (x)

3.00.0002 (y) 0.0004 (y)
0.0001 (z) 0.0001 (z)

196,610
0.0003 (x) 0.0005 (x)

5.80.0003 (y) 0.0004 (y)
0.0001 (z) 0.0002 (z)

5 Conclusions and Future Work

In this paper, we have proposed an efficient and novel view-based
symmetry detection algorithm based on viewpoint entropy distri-
bution. We have compared with the two latest symmetry detection
approaches based on a common set of selected models and demon-
strated the better performance of our method in terms of accuracy
and efficiency. A detailed evaluation of our approach on a dataset
of 200 models also validates its good robustness, detection rate, and
flexibility.

To further improve and explore the algorithm, we list several
promising directions here as our next work. Firstly, traditional
PCA-based approaches cannot guarantee that the directions of the
largest extent are parallel to the axes of the ideal canonical co-
ordinate frame (front-back, left-right, or top-bottom view) of 3D
models. One promising approach to achieve further improvement
in terms of alignment accuracy is the Minimum Projection Area
(MPA) [Johan et al. 2011] alignment method, which can align
most 3D models in terms of axes accuracy (the axes are paral-
lel to the ideal canonical coordinate frame) and is also robust to
model variations, noise, and initial poses. We are interested in
combining it with CPCA for the 3D alignment process: first per-
forming CPCA for an initial alignment and then correcting possible
tilt views (poses) by utilizing a similar idea as MPA. It is promis-
ing to help to achieve even better symmetry detection performance,
especially for decreasing the percentage of False Negative (FN).



Table 4: Overall symmetry detection accuracy of our algorithm based on the first 200 models of the NIST benchmark.

Metrics TRDR FAR DR SP AC PP NP FNR FPR
Values 76.80% 15.82% 82.32% 56.92% 75.61% 84.18% 53.62% 17.68% 43.08%

Table 5: Mean/max errors and timing comparison of our algorithm with different view sampling. For the Cube model, since there are three
detected symmetry planes, we use their normal directions (x/y/z) to differentiate them.

View Cube Beetle Homer Mannequin
sampling mean max time mean max time mean max time mean max time

L1

0.0005 (x) 0.0008 (x)
0.7 0.0062 0.0062 0.8 0.0013 0.0036 1.0 0.0096 0.0210 1.10.0057 (y) 0.0082 (y)

0.0057 (z) 0.0082 (z)
L2 0.0005 (x) 0.0008 (x) 3.4 0.0062 0.0062 3.6 0.0013 0.0036 3.8 0.0096 0.0210 3.7
L3 0.0057 (y) 0.0082 (y) 22.6 0.0062 0.0062 16.9 0.0013 0.0036 19.5 0.0096 0.0210 27.3
L4 0.0057 (z) 0.0082 (z) 2481.7 0.0062 0.0062 1048.0 0.0013 0.0036 1600.5 0.0096 0.0210 3465.1

Secondly, an automatic and adaptive strategy to select an appropri-
ate threshold δ for respective models or classes is another interest-
ing research direction and deserves our further exploration.

Finally, we also plan to explore several interesting applications of
our symmetry detection algorithm, such as 3D model alignment and
best views selection. Based on the detected symmetry planes and
the basic idea of PCA, it is straightforward to apply our algorithm
in 3D alignment: the first principal axis gives maximum symmetry
degree (that is, it has the smallest total matching cost in terms of en-
tropy for the symmetric viewpoint pairs w.r.t the axis) and the sec-
ond principal axis is both perpendicular to the first axis and also has
a maximum symmetry degree. It is promising to achieve similar re-
sults as those in [Podolak et al. 2006] while outperforms either PCA
or CPCA for certain models with symmetry plane(s). However, our
algorithm has better efficiency property than [Podolak et al. 2006],
thus will be more promising for related real-time applications in-
cluding 3D model retrieval.

Our symmetry is related to viewpoint entropy which indicates the
amount of information that a view contains. In an analogy to 3D
model alignment, we plan to use the total viewpoint entropy match-
ing cost to indicate the goodness of a candidate best view w.r.t a
viewpoint: the bigger the summed matching cost is, the better the
viewpoint is, since it indicates that there is less redundant informa-
tion in the view. Algorithm 1 targets finding the minimum view-
point matching cost in terms of entropy, while we now need to find
the viewpoint that gives a maximum viewpoint matching cost.
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